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Abstract. q-oscillators are associated to the simplest non-commutative example of Hopf
algebra and may be considered to be the basic building blocks for the symmetry algebras
of completely integrable theories. They may also be interpreted as a special type of spectral
nonlinearity, which may be generalized to a wider class off -oscillator algebras.

In the framework of this nonlinear interpretation, we discuss the structure of the stochastic
process associated toq-deformation, the role of theq-oscillator as a spectrum-generating algebra
for fast growing point spectrum, the deformation of fermion operators in solid-state models and
the charge-dependent mass of excitations inf -deformed relativistic quantum fields.

1. Complete integrability, q-commutators and nonlinearity

In the last few years many papers have appeared concerning a deformation of the harmonic-
oscillator algebra of creation and annihilation operators, called theq-oscillator algebra
(Biedenharn 1989, Macfarlane 1989).

From a mathematical point of view,q-oscillators are associated to the simplest non-
trivial example of Hopf algebra. However, the physical relevance ofq-deformed creation
and annihilation operators is not always very transparent in the studies that have been
published on the subject. Therefore it is important to emphasize that there are, at least,
two properties which makeq-oscillators interesting objects for physics. The first is the fact
that they naturally appear as the basic building blocks of completely integrable theories.
Hence, in so far as complete integrability is important for physics,q-oscillators are a
relevant physical tool. The second concerns the recently discovered connection betweenq-
deformation and nonlinearity. In this paper we shall mainly be concerned with this second
aspect. Nevertheless it is useful to emphasize the natural connection of theq-oscillator to
complete integrability (Faddeev 1980, Izergin and Korepin 1982, Kulish and Reshetikhin
1983).

Associated with each solution of the Yang–Baxter equation there is a matrix algebra
generated by the matrix elements of the Lax operator. The simplest non-trivial example of
theR matrix leads to the matrix algebra ofSUq(2)

[S3, S±] = ±S±
[S+, S−] = q2S3 − q−2S3

q − q−1
= [2S3]q .

(1)

† On leave from Lebedev Physical Institute, Moscow, Russia.
‡ E-mail address: vilela@alf4.cii.fc.ul.pt

0305-4470/98/286037+08$19.50c© 1998 IOP Publishing Ltd 6037



6038 V I Man’ko and R Vilela Mendes

By a generalization of the Jordan–Schwinger map this algebra may be realized in terms of
creation and annihilation operators, namely

S+ = A†1A2 S− = A†2A1 S3 = 1
2(N1−N2) (2)

where(A1, A
†
1) and(A2, A

†
2) are mutually commuting boson operators satisfying

AiA
†
i − q−1A

†
i Ai = qNi (3)

supplemented by the relations [Ni,A
†
j ] = A†i δij , [Ni,Aj ] = −Aiδij andA†i Ai = [Ni ]q . The

last relation is equivalent to the requirement of invariance of the algebra underq ←→ q−1.
This is called the algebra of theq-oscillator or theq-deformed Heisenberg algebra. The
construction ofq-deformed algebras, purely in terms ofq-oscillators, may be extended to
generalUq(n). In this way, rather than a mathematical curiosity,q-oscillators appear as the
very basic building blocks of completely integrable dynamical systems.

Another important property ofq-oscillators is their relation to nonlinearity of a special
type. In the remainder of this paper we shall deal with this aspect ofq-deformation,
in particular with the structure of the stochastic processes associated withq-oscillators,
their hypothetical role as a spectrum generating algebra for fundamental excitations, the
deformation of fermion operators in the construction of solid-state models and a relativistic
generalization.

Using a nonlinear map (Polychronakos 1990, Curtright and Zachos 1990) theq-oscillator
has been interpreted (Man’koet al 1993a, b) as a nonlinear oscillator with a special type
of nonlinearity which classically corresponds to an amplitude dependence of the oscillator
frequency. This is seen as follows. Let

A = af (N)
A† = f (N)a† (4)

with

f (N) =
(

sinh(λN)

N sinhλ

)1
2

(5)

whereq = eλ. Then if a, a† satisfy the usual undeformed commutation relations

[a, a†] = 1 (6)

the operatorsA,A† in (4) satisfy theq-deformed commutation relations (3). This means
that the Hamiltonian

H = A†A = f (N)a†af (N) (7)

has a spectrum with the same structure as the spectrum ofa†a, the difference being that the
eigenvalues have valuesnf 2(n), n = 0, 1, 2, . . . , instead ofn. Writing

a = 1√
2
(q + ip)

a† = 1√
2
(q − ip)

(8)

this means that the classical Hamiltonian

H = 1
2f

2{ 12(p2+ q2− 1)}(p2+ q2− 1) (9)
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has as a solution, the oscillation

q = q0 cos�t + 1

�
p0 sin�t

p = 1

�
p0 cos�t − q0 sin�t

(10)

with

� = f 2

(
1

2
q2

0 +
p2

0

2�2
− 1

)
+ 1

2

(
q2

0 +
p2

0

�2
− 1

)
f 2′

(
1

2
q2

0 +
p2

0

2�2
− 1

)
. (11)

Therefore the frequency is a function of the amplitude of the oscillation

� = �(p0, q0). (12)

This being typical of nonlinear phenomena, it means thatq-deformation is the quantum
analogue of this type of nonlinearity.

As pointed out by Man’koet al (1996), the association of nonlinearity to the deformation
of the commutation relations may be generalized to relations of the form

AA† − g(N)A†A = h(N). (13)

A solution of the type of equation (4) exists if

f 2(N + 1)(1+N)− g(N)f 2(N)N = h(N). (14)

f -deformed states, in the sense discussed above, appear as stationary states of a trapped
laser-driven ion (Matos Filho and Vogel 1996).

Equation (14) establishes a general relation between deformation of the commutation
relations and nonlinear modifications of the spectrum in the sense defined above. In the
past, algebra deformation studies have been mostly concerned with the specific case ofq-
deformation because of its association to completely integrable systems. Nevertheless many
results, including the construction of Hopf algebras (Polychronakos 1990), can be extended
to the more general case off -deformation defined in equation (14).

The type of quantum nonlinearity introduced byf -deformation provides a compact
description of effects that are otherwise difficult to model. For example, the spectrum
associated toq-deformation grows like sinh(λn), that is, the local spacing grows withn,
exponentially for largen. The relation of level spacings to the nature of the potential has
been discussed by Vilela Mendes (1985), the conclusion being that a fast increasing level
spacing cannot be obtained with reasonable local potentials. The discussion carried out was
in connection with an outstanding problem of particle physics, namely the fact that the mass
spectrum of the lepton and quark families grows quite remarkably. It is therefore interesting
to find such a level spacing growth at the basic level ofq-deformed creation and annihilation
operators, the building blocks of completely integrable theories. For example, we might
imagine the massive elementary leptons to be described by a composite operator product
C†A† of a fermionC† and aq-bosonA† with excitations controlled by the Hamiltonian
H = kA†A+me. Then the mass spectrum would be

mn = k sinh(λn)

sinhλ
+me.

Identifying the muon and the tau with then = 1 and 2 states leads tok = 105 MeV and
λ = 2.82, which would imply for the next lepton excitation, if it exists, a mass of around
30 GeV.
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2. Deformed fermion operators and solid-state models

In section 1 we have seen that, through a generalization of the Jordan–Schwinger map,
the q-algebraSUq(2) may be realized with products of two mutually commutingq-boson
operators (equation (2)). As in the undeformed case, a similar Jordan–Schwinger map exists
for a pair(C1, C

†
1) and(C2, C

†
2) of mutually anticommutingq-deformed fermion operators.

S+ = C†1C2 S− = C†2C1 S3 = 1
2(N1−N2) (15)

with

CiC
†
i + qC†i Ci = qNi (16)

and [Ni, C
†
j ] = C

†
i δij , [Ni, Cj ] = −Ciδij , C†i Ci = [Ni ]q . Henceq-fermions may also

be considered as building blocks for quantum algebras. As in the boson case there is a
nonlinear interpretation for fermionq- andf -deformation. Let

C = cf (N)
C† = f (N)c†. (17)

Then theC operators will satisfy

CC† + g(N)C†C = h(N) (18)

if

f
2
(N + 1)(1−N)+ g(N)f 2

(N)N = h(N). (19)

For the case ofq-deformation (equation (16)),g(N) = q, h(N) = qN , and the solution of
equation (19) with the limitf → 1 whenq → 1 is

f (N) = q(N−1)/2. (20)

The nonlinear representation (17) means that the deformation is equivalent to the
introduction of an occupation number dependence on the action of the operators. This
is a convenient tool to generate effects of this type in physical models. As an example
consider the Hubbard model (Hubbard 1963), a paradigmatic model for the problem of
electron correlations. The Hamiltonian is

H = −
∑
σ,〈x,y〉

tc†xσ cyσ +
∑
x

Ux(Nx↑ − 1
2)(Nx↓ − 1

2) (21)

the first sum being over nearest-neighbour lattice sites〈x, y〉 andσ ∈ {↑,↓} the electron
polarization.f -deformation of this model means that the electron operatorsc

†
xσ , cyσ are to

be replaced by deformed operators

C†xσ = f (Nx)c†xσ
Cxσ = cxσ f (Nx)

(22)

with Nx = Nx↑ + Nx↓. The second (Coulomb) term in (21) is unchanged and the hopping
term becomes

−
∑
σ,〈x,y〉

tf (Nx)f (Ny + 1)c†xσ cyσ . (23)

It means that the hopping amplitude now depends on whether there are other electrons
(besides the one that is hopping) in the two sites involved in the hopping. There is reasonable
evidence that such an effect is indeed present in oxide superconductors and what we have
done is to interpret the Hirsch model (Hirsch 1992, 1994) as anf -deformation of the
Hubbard model.
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3. Deformed white noise and Brownian motion

There is a canonical association of the time dependence of harmonic-oscillator spectral
modes with Brownian motion. This is most clearly seen in the Paley–Wiener construction
of Brownian motion (Paley and Wiener 1934, Hida 1980). Using the Paley–Wiener
construction with the spectrum ofH = A†A, instead ofa†a, one obtains the corresponding
q- or f -deformed process.

Let Xk(ω) and Yk(ω), k = 0,±1,±2, . . . , be a sequence of independent identically
distributed normalized Gaussian random variables. Then

Zk(ω) = 1
2(Xk(ω)+ iYk(ω)) (24)

is a sequence of complex Gaussian random variables. The formal sum

η(t, ω) =
∞∑

n=−∞
Zk(ω)e

if 2(n)nt (25)

is not convergent as aL2 random variable, but it has a meaning in a generalized function
sense to be made precise below. By construction

〈η(t, ω)〉 = 0 (26)

and using (5) the covariance is

〈η(t, ω)η(0, ω)〉q =
∞∑
n=0

tn

n!

(
sin(λ∂t )

sinhλ
− ∂t

)n
δ(t) (27)

where we have used thef 2(n) function appropriate forq-deformation. Usingtnδ(k)(t) =
(−1)nn!(kn)δ

(k−n)(t), equation (27) may be converted into a multipole series. Therefore
η(t, ω) is a generalized random process in an ultradistribution sense (Sebastião e Silva
1967, Hoskins and Sousa Pinto 1994). For smallλ, (q ' 1), it becomes

〈η(t, ω)η(0, ω)〉q '
(

1+ λ
2

3!

)
δ(t)+ λ

2

2
δ′′(t). (28)

The general expression for the characteristic functional ofq-deformed ‘white’ noise is

C(ξ) = exp

{
− 1

2

∞∑
n=0

∫
dt ds ξ∗(t)

(t − s)n
n!

(
sin(λ∂t )

sinhλ
− ∂t

)n
δ(t − s)ξ(s)

}
(29)

with the corresponding deformed Brownian motion obtained by integration

X(t, ω) =
∫ t

0
η(s, ω)ds. (30)

Note that in the Paley–Wiener construction of the deformed stochastic processes, the unequal
time correlations are generated by the choice of the spectrumnf 2(n), that is, by the choice
of the HamiltonianA†A as defining the time dependence of the oscillation modes. This
is the construction that captures the interpretation ofq-deformation as a form of spectral
nonlinearity. In Man’ko and Vilela Mendes (1993) a different construction was discussed
where, by using the isomorphism between Brownian motion and boson fields, we have used
the commutation relations (3) but imposed delta correlation for the process. In that case
the covariance is Gaussian, although higher-order correlations are not, differing from the
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Gaussian ones by a kind of braiding structure arising from the commutation relations. The
construction of Man’ko and Vilela Mendes (1993) as well as a similar one developed by
Bozejko and Speicher (1991) starting from a different set of (quon) commutation relations,
are also perfectly consistent. However, the one presented in this paper, because of its direct
interpretation in terms of nonlinearity of the dynamics, is probably more interesting for its
physical consequences.

4. A relativistic generalization. Quantum fields

Another use of theq-nonlinear (f -nonlinear) interpretation of deformations is the possibility
to write down equations for quantum fields incorporating nonlinearity. An attempt to
describe classical deformed scalar fields, using the number of quanta as an integral of
motion, has been discussed by Man’koet al (1995). However, for relativistic quantum
fields, the number of quanta is not preserved and we shall use another constant of motion.

Let a†+(k) a
†
−(k) a+(k) a−(k) be creation and annihilation operators for charged free

bosons of three-momentumk and rest massm0. The relativistic Hamiltonian of the free
boson field is

H0 =
∑
k

k0{a†+(k)a+(k)+ a†−(k)a−(k)} (31)

with

k0 =
√
k2+m2

0. (32)

Now define the operators

A±(k) = a±(k)f (k,Q)
A
†
±(k) = f (k,Q)a†±(k)

(33)

with

f (k,Q) =
(
k2+M2(Q)

k2+m2
0

)1
2

(34)

M2(Q) being an arbitrary function of the charge operatorQ

Q =
∫

d3k {a†+(k)a+(k)− a†−(k)a−(k)} (35)

which for charged free boson fields is a constant of motion related to the Noether current

jµ = i(φ∗∇µφ − φ∇µφ∗) (36)

by

Q = i
∫

d3x (φ∗
•
φ −φ

•
φ ∗). (37)

If in the Hamiltonian (31) we replacea±(k) by A±(k) we obtain

H =
∑
k

k0{A†+(k)A+(k)+ A†−(k)A−(k)} (38)
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which, by construction, represents a relativistic quantum system where the mass of the
excitations created byA†±(k) depends on the pre-existing total charge. On the other hand
this change in the dynamical structure of the excitations may be interpreted, as before, as a
change on the commutation relations of the creation and annihilation operators, namely

A±(k)A
†
±(k
′)− f (k,Q± 1)f (k′,Q± 1)

f (k,Q)f (k′,Q)
A
†
±(k
′)A±(k) = f 2(k,Q± 1)δ(k − k′)

A+(k)A
†
−(k
′)− f (k,Q+ 1)f (k′,Q+ 1)

f (k,Q+ 2)f (k′,Q)
A
†
−(k
′)A+(k) = 0

A−(k)A
†
+(k
′)− f (k,Q− 1)f (k′,Q− 1)

f (k,Q− 2)f (k′,Q)
A
†
+(k
′)A−(k) = 0.

(39)

5. Conclusions

Deformation of the canonical commutation relations in the sense of equation (13) may,
through equation (4), be interpreted as a modification of the associated spectrum which is
the quantum analogue of the classical nonlinear modification of the frequency of oscillation.
q-deformations are a particular type of such deformations which have an important role
because of its association with completely integrable theories.

As illustrated in sections 1, 2 and 4, the spectral interpretation of the algebraic
deformation of boson and fermion operators provides simple models for physical systems
with non-uniform or density-dependent spectra.

In addition, the nonlinear modification of the spectrum arising from deformation of
the algebra has interesting implications in other structures, for example in the construction
of the associated stochastic processes. By an extension of the tools developed in white
noise analysis (Hidaet al 1993) these deformed processes may provide a natural infinite-
dimensional analysis framework for nonlinear interacting systems.
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